skip to main content


Search for: All records

Creators/Authors contains: "Espinoza, Néstor"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present a precise ground-based optical transmission spectrum of the hot Saturn HATS-5b (Teq= 1025 K), obtained as part of the ACCESS survey with the IMACS multi-object spectrograph mounted on the Magellan Baade Telescope. Our spectra cover the 0.5–0.9μm region and are the product of five individual transits observed between 2014 and 2018. We introduce the usage of additional second-order light in our analyses, which allows us to extract an “extra” transit light curve, improving the overall precision of our combined transit spectrum. We find that the favored atmospheric model for this transmission spectrum is a solar-metallicity atmosphere with subsolar C/O, whose features are dominated by H2O and with a depleted abundance of Na and K. If confirmed, this would point to a “clear” atmosphere at the pressure levels probed by transmission spectroscopy for HATS-5b. Our best-fit atmospheric model predicts a rich near-IR spectrum, which makes this exoplanet an excellent target for future follow-up observations with the James Webb Space Telescope, both to confirm this H2O detection and to superbly constrain the atmosphere’s parameters.

     
    more » « less
  2. Abstract

    Study Analysis Group 21 (SAG21) of NASA’s Exoplanet Exploration Program Analysis Group was organized to study the effect of stellar contamination on space-based transmission spectroscopy, a method for studying exoplanetary atmospheres by measuring the wavelength-dependent radius of a planet as it transits its star. Transmission spectroscopy relies on a precise understanding of the spectrum of the star being occulted. However, stars are not homogeneous, constant light sources but have temporally evolving photospheres and chromospheres with inhomogeneities like spots, faculae, plages, granules, and flares. This SAG brought together an interdisciplinary team of more than 100 scientists, with observers and theorists from the heliophysics, stellar astrophysics, planetary science, and exoplanetary atmosphere research communities, to study the current research needs that can be addressed in this context to make the most of transit studies from current NASA facilities like Hubble Space Telescope and JWST. The analysis produced 14 findings, which fall into three science themes encompassing (i) how the Sun is used as our best laboratory to calibrate our understanding of stellar heterogeneities (‘The Sun as the Stellar Benchmark’), (ii) how stars other than the Sun extend our knowledge of heterogeneities (‘Surface Heterogeneities of Other Stars’), and (iii) how to incorporate information gathered for the Sun and other stars into transit studies (‘Mapping Stellar Knowledge to Transit Studies’). In this invited review, we largely reproduce the final report of SAG21 as a contribution to the peer-reviewed literature.

     
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)
    ABSTRACT We report the discovery of a warm sub-Saturn, TOI-257b (HD 19916b), based on data from NASA’s Transiting Exoplanet Survey Satellite (TESS). The transit signal was detected by TESS and confirmed to be of planetary origin based on radial velocity observations. An analysis of the TESS photometry, the Minerva-Australis, FEROS, and HARPS radial velocities, and the asteroseismic data of the stellar oscillations reveals that TOI-257b has a mass of MP = 0.138 ± 0.023 $\rm {M_J}$ (43.9 ± 7.3 $\, M_{\rm \oplus}$), a radius of RP = 0.639 ± 0.013 $\rm {R_J}$ (7.16 ± 0.15 $\, \mathrm{ R}_{\rm \oplus}$), bulk density of $0.65^{+0.12}_{-0.11}$ (cgs), and period $18.38818^{+0.00085}_{-0.00084}$ $\rm {days}$. TOI-257b orbits a bright (V = 7.612 mag) somewhat evolved late F-type star with M* = 1.390 ± 0.046 $\rm {M_{sun}}$, R* = 1.888 ± 0.033 $\rm {R_{sun}}$, Teff = 6075 ± 90 $\rm {K}$, and vsin i = 11.3 ± 0.5 km s−1. Additionally, we find hints for a second non-transiting sub-Saturn mass planet on a ∼71 day orbit using the radial velocity data. This system joins the ranks of a small number of exoplanet host stars (∼100) that have been characterized with asteroseismology. Warm sub-Saturns are rare in the known sample of exoplanets, and thus the discovery of TOI-257b is important in the context of future work studying the formation and migration history of similar planetary systems. 
    more » « less
  7. null (Ed.)
  8. Abstract

    We present the discovery of TYC9191-519-1b (TOI-150b, TIC 271893367) and HD271181b (TOI-163b, TIC 179317684), two hot Jupiters initially detected using 30-min cadence Transiting Exoplanet Survey Satellite (TESS) photometry from Sector 1 and thoroughly characterized through follow-up photometry (CHAT, Hazelwood, LCO/CTIO, El Sauce, TRAPPIST-S), high-resolution spectroscopy (FEROS, CORALIE), and speckle imaging (Gemini/DSSI), confirming the planetary nature of the two signals. A simultaneous joint fit of photometry and radial velocity using a new fitting package juliet reveals that TOI-150b is a $1.254\pm 0.016\ \rm {R}_ \rm{J}$, massive ($2.61^{+0.19}_{-0.12}\ \rm {M}_ \rm{J}$) hot Jupiter in a 5.857-d orbit, while TOI-163b is an inflated ($R_ \rm{P}$ = $1.478^{+0.022}_{-0.029} \,\mathrm{ R}_ \rm{J}$, $M_ \rm{P}$ = $1.219\pm 0.11 \, \rm{M}_ \rm{J}$) hot Jupiter on a P = 4.231-d orbit; both planets orbit F-type stars. A particularly interesting result is that TOI-150b shows an eccentric orbit ($e=0.262^{+0.045}_{-0.037}$), which is quite uncommon among hot Jupiters. We estimate that this is consistent, however, with the circularization time-scale, which is slightly larger than the age of the system. These two hot Jupiters are both prime candidates for further characterization – in particular, both are excellent candidates for determining spin-orbit alignments via the Rossiter–McLaughlin (RM) effect and for characterizing atmospheric thermal structures using secondary eclipse observations considering they are both located closely to the James Webb Space Telescope (JWST) Continuous Viewing Zone (CVZ).

     
    more » « less